2(x^2-4)+(1+7)=154-(7+1)

Simple and best practice solution for 2(x^2-4)+(1+7)=154-(7+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x^2-4)+(1+7)=154-(7+1) equation:



2(x^2-4)+(1+7)=154-(7+1)
We move all terms to the left:
2(x^2-4)+(1+7)-(154-(7+1))=0
We add all the numbers together, and all the variables
2(x^2-4)+8-(154-8)=0
We add all the numbers together, and all the variables
2(x^2-4)-138=0
We multiply parentheses
2x^2-8-138=0
We add all the numbers together, and all the variables
2x^2-146=0
a = 2; b = 0; c = -146;
Δ = b2-4ac
Δ = 02-4·2·(-146)
Δ = 1168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1168}=\sqrt{16*73}=\sqrt{16}*\sqrt{73}=4\sqrt{73}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{73}}{2*2}=\frac{0-4\sqrt{73}}{4} =-\frac{4\sqrt{73}}{4} =-\sqrt{73} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{73}}{2*2}=\frac{0+4\sqrt{73}}{4} =\frac{4\sqrt{73}}{4} =\sqrt{73} $

See similar equations:

| 5^9/11=x | | 5x9/11=x | | 2(x^2-4)+7=154 | | -9h+-6+12h+40=22 | | 2(x^2-4)+7=154-7 | | 6.7-0.5x=2.2 | | 9/5y-1=-2 | | -3(x-6)+5=23 | | 3(4h+5)+2=14+3(5h-2) | | 3(4x+6)=-36+6 | | 3x-20=8x-50 | | x−3.4=(x−2.5)/1.3 | | v/2+9=30 | | 4(4p-3)=2(4+3p) | | 4x+14-6x=16-15x+13x-2 | | 10y+9=14y-11 | | -3x+10=-6x+28 | | (x–2)–2(x+4)=3(2x–3) | | 6=u/4=10 | | 8²x+¹=16x+¹ | | 6x+8=28x-16+90 | | 1.08((2t+2.50)+3=13.80 | | 25x-9-13x+2=25x-7-13x+13 | | w/4-17=3 | | x+(x+1)+(x+2)=-126 | | 20=-6u+2(u+6) | | 25x-9-13x+2=25x-7-13x13 | | 26x-7-18x+4=23x-3-15x+12 | | 2w+1.3=2.7 | | 4(2f+1)+9=45 | | -8u=44 | | 2x+10-4x=19-15x+13x-9 |

Equations solver categories